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Abstract. A large c!ass of ideal fluids satisfies the equation p u  = gU, where U is the internal 
energy and g is a characteristic constant of the system. The ‘ideal quantum gases’ are here 
defined thermodynamically by this equation. These systems then include weakly interacting 
fermions or bosons either in the non-relativistic or in the extreme relativistic limit. The 
relationship between different ideal quantum gases can be shown in a diagram with 
horizontal coordinate g. This ensures that the states of such systems are represented by 
vertical lines. In order to make such a diagram useful for non-ideal systems one may choose 
as coordinate x = B , / p -  1, where B, is the adiabatic bulk modulus of elasticity, which has 
the value g for an ideal quantum gas. I t  is desirable to represent the classical ideal gas, which 
is here defined thermodynamically by pu  = NkT, ‘orthogonally’ by a horizontal line and this 
is achieved by the choice of the coordinate y = (1 - l/y)(l+ l/x), where y is CJC,. The 
ideal classical gas has then states which lie on y = 1. 

Such a diagram has the additional remarkable property that important simple systems 
have states represented by one single point. Systems of this type may be called ‘super-ideal’ 
and can be defined by U = p u / g  = ST/j where j is  a constant and S is the entropy. Examples 
are : ideal classical gases of given y ,  black body radiation, non-relativistic and non-interacting 
degenerate fermions, a gas of non-interacting non-relativistic bosons below its condensation 
temperature, and limiting cases of a classical ideal gas of given y .  The coordinates of such 
systems have the form [x, y ]  = [g, j/( j -  l)]. 

The theory of this diagram and the associated equations of state are analysed in detail. 

1. Introduction 

In a recent paper (Huang 1972) a class of ‘super-ideal’ gases was defined thermodynamic- 
ally as comprising fluids which, in a usual notation, satisfy the conditions 

p v  = gu and TS = j U ,  

where g and j are constants and U is the internal energy. The resulting thermodynamic 
relations are reasonably simple and apply to systems of weakly interacting particles as 
given in table 1. For a general range of temperatures in the non-relativistic regime, these 
systems form a subclass of the class of ideal quantum gases defined earlier by 

P O  = gu, 

and systems of fermions and bosons are then not super-ideal. It is for this reason that 
the notion of a super-ideal quantum gas has a more restricted application than the 
concept of an ideal quantum gas (Landsberg 1961a). Nevertheless, the simplicity of the 

t Based on a talk given at the van der Waals Centennial Conference on Statistical Mechanics, Amsterdam, 
August 1973. 
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thermodynamics of the super-ideal gas makes it of interest to ask : what is the precise 
relation between ideal quantum gases and the super-ideal quantum gases? 

The answer to this question is readily obtainable from the analysis of the equation 
pu = gU,  which is known to imply the existence of a functionf(z) such that 

uug = f(z), z Tug. (3) 

Also, the entropy of the system is given by a function h(z), where 

S = h(z), z h  = f', (4) 

and the prime denotes differentiation with respect to z. To different ideal quantum gases 
correspond different functions f and h. 

The answer to our question can be given in terms of these functions. It is : While f 
and h are in general complicated functions for ideal quantum gases, they are simple 
powers in the case of super-ideality. This will now be demonstrated. 

2. The special forms offand h for super-ideal systems 

Suppose that Ae'de single-particle energy levels lie in an energy range de where A is 
proportional to volume U, but independent of temperature. The number of particles 
N in volume U, the internal energy U and the entropy are given most easily in terms of 

I (a ,  s, +) = ~ 

exp( x - a) & 1 ' 

B(a, s) = Z(a, s +  1 ,  +)/l(a, s, +): 

where T(s) is the gamma function. If p denotes the chemical potential, one finds for 
s >  -1  

U = (s+ 1)NkTB -, s (k", 1 
S = ~ N [ ( S + ~ ) , ( & , S )  -&I. (7) 

A statistical mechanical interpretation of the thermodynamic quantity g is then pro- 
vided by (Landsberg 1961b, pp 203 ,207)  

1 g = -  
s + l '  

Now equation ( 5 )  shows that, for fixed N ,  I ( p / k T ,  s, +) depends on v T S +  ', ie p / k T  is a 
function of Tug z z, say v(z).  Hence B(p/kT,  s) is a function of z ,  say +(z) .  It follows, by 
comparing ( 3 )  with (6 )  and (4) with (7 ) ,  that 

f(z) = (s+ 1 )  N k z  $(z) 

h( Z )  = k N [ (  s + 2)$( 2) - V( z)] . 
(9) 

(10) 

Equations ( 9 )  and (10) show that f and h are in general quite complicated functions of z. 
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What forms do  the functions f and h take in the case when the ideal quantum gas is 
super-ideal? We now, for the first time, use equation (2) which shows that f and h are 
simply related for super-ideal systems. Note that the relation 

1 P 
T T 

dS =-dU+-dv 

is by ( 1 )  and (2) (if j is finite) 

whence, with a constant of integration denoted (for later convenience) by j A j -  ’ 
In Sj  = In Uvg + In j A j -  ie uvg = S j J j J j - ’ .  ( 1 1 )  

f(z) = hj(z)/jAj- f ’( Z )  = (h(z)/A)j- ’ h’( z), 

This implies by (3) and (4) the following relation between f and h : 

(12) 

where a prime denotes differentiation with respect to z = Tug. By (4) and (12) 

Equations (13) and (14) give the form of the functionsf and h of the theory of ideal 
quantum gases for the special case of ‘super-ideality’. 

The new quantity A has no simple physical interpretation ; it contains a collection of 
constants for the system under consideration. Expressions for it are given in table 1 .  

Consider now an ideal classical gas, defined here by the thermodynamic relation 
pv = N k l ;  whose heat capacity ratio y = C,/C, is a constant. Such a system is an ideal 
quantum gas, defined here by p v  = gU, provided 

f ( z )  = N k z / g  = C,Z 

since g = +y - 1 in this case (see Landsberg 1961 b, p 207). This is not in agreement with 
(14) except, possibly by choosing a limiting case of (14), as will now be shown. 

In a super-ideal system let A a n d j  tend to infinity subject to 

lim (;) = c,. 
j ,d -+m 

Then the limiting expression of (14) has the required form. Also 

S = h(z) = z - ’ f ‘ ( z )  = C,lnz+S,  = C,ln(TvY-’)+s1 J 
where SI is a constant. Thus, working from the theory of the super-ideal systems, one 
has to interpret the function h(z) as 

i ( lim q) dz = 1 ( lim h.(r)) dz. 
j . 2 - m  j , d - + m  
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As another example of such interpretations, the expression of table 2 

- 2 2 1 i ( j - 1 )  

j -  1 

has to be interpreted as 

lim ( L 2 1 i ( j - 1 ) )  = c 
j ,k+m j - 1  

The limiting case j ,  A -P CO of super-ideal systems thus represents ideal classical gases of 
constant heat capacity ratio, provided these systems are considered in the limit of 
infinitely large entropy. Because of equation (13) one can also specify this limit by 
requiring that 

Non-relativistic ideal ' structureless molecules 2 '  
classical gas ( p u  = N k T )  in one dimension 

two dimensions 
structureless molecules in $ 

> c lim - = - =  three dimensions 

two rotational degrees of 
freedom 
rigid or triatomic molecules f 
with three rotational 

with CJC, constant structureless molecules in 1 CO 

1 Nk 
' diatomic molecules with 4 > j , A - c e ( j  g 

degrees of freedom 

Table 1. Special systems. 

Label System g j  2 

~ 

G t  ) Non-relativistic gas of ( below condensation $ $[(&k(2nmk/h2)3/2 
bosons 

C 1 temperature 
classical limit 

Black body radiation %n5k4/h3c4 
Phonon gas (Debye theory) at low temperature } f } 

M(n5k4 3 c 3 

H§ 

IO11 Extreme relativistic gas of bosons or fermions - (k6/8  h3c3)n& 
H§ 4 5  i h  ) (  ; +2c;') 

t From C,-C, = N k  it follows that y - 1  = g = N k / C , ,  so that C, = g - ' N k .  These 
systems are super-ideal only in the limiting case specified. 
2 N is the number of particles present, g is their spin degeneracy (g = 2 for electrons), k is 
Boltzmann's constant, [(i) = 1.341 is a value of the Riemann zeta function. 
0 c is the velocity of light in vacuo ; c, and c, are the velocities of longitudinal and transverse 
acoustic waves in a solid. 
1) The factor x is, with the notation of 8 2,  

x has to be a constant for the system to be represented by a point, and this occurs for 
bosons if p = 0 when x = 2'[(4) = 256 x 1.823. 
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Note that the definitions of an ideal classical gas and of an ideal quantum gas are 
here in purely thermodynamic terms. The ideal classical gas can also be defined as a 
system of weakly interacting particles subject to classical statistical mechanics. This 
would lead to p u  = N k T  and to certain constant C ,  values. By leaving C, either un- 
specified or by restricting it to any constant values our thermodynamic definition is 
more general. Similarly the ideal quantum gas is here specified rather generally. The 
logical relationships between the various systems are illustrated in figure 1. 

I I 

PV = NkT 

y a constant 

Figure 1. The logical overlaps resulting from the definitions of ideal fluids. For example, it 
shows that the system ‘ p u  = NkT.  y a constant’ is not super-ideal, except possibly as a limiting 
case, but that it is a ‘pu = g U ’  system, ie an ideal quantum gas. 

3. Various expressions for the energies in the case of super-ideality 

There are six distinct ways of writing U in terms of any two of the four variables U, S ,  T, p .  
For example, by equations (3), (12) and (4) 

Also by (3) and (14) Uug = f = (,?/j)zj/(j-’), so that 

Putting 2: = gU/p  in these two expressions yields 

The remaining two ways of writing U are given by equations (1) and (2). Since the 
Helmholtz free energy, the enthalpy and Gibbs free energy are respectively 

we also have six alternative ways of expressing each of them, by using equations (l), (2), 
(15), (16), (17) or (18) in (19). In this way one can find again equations (7) to (10) of 
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Huang’s paper but with his constants C 2 ,  C3, C4 now identified in terms of A : 

1 ,p / ( j  - 1 ) Tj/(j - 1 ) 1 - j  
J 

F = - A ( p ? T j ) l / ( j - - l )  (E c2 

His constant C 1  is identified in equation (15)  above. 
The thermodynamics of the ideal quantum gas frequently involves the combination 

Tf‘/U as seen from table 2 (based on table 27.1 of Landsberg 1961b). In the table u p  is 
the coefficient of isothermal volume expansion, C, is the heat capacity at constant 
pressure and B ,  is the isothermal bulk modulus of elasticity. The expressions for the 
super-ideal gas are obtained from the (known) expressions for the ideal quantum gas by 
noting by equations (2) ,  (12)  and (13)  that 

Column 3 of table 2 is in agreement with table 1 of Huang (1972).  One may therefore 
regard column 2 of table 2 as the appropriate generalizations of these relations to the 
ideal quantum gases. A summary of properties of various systems is given in table 3. 

Table 2. 

p u  = gu 
Ideal quantum gas 

pv = gU and 
TS = jU. Super-ideal 
quantum gas 

C” 

B TIP 

f ‘  

1 + g  
l + S - g T f ’ / U  

1 + g - g Tf ‘/U 

1 + g  Tf’ /U  
TSJU 1 + g - g Tf ‘ / U  

(1 + g ) ( j -  1) 
j-g-1 

j - 1 - g  
j -  1 

1 + g  
j-g-1 

Tf ‘/U i 
1 + g - gTf‘/U j - g -  1 

4. A diagram in which super-ideal fluids are represented by points and ideal fluids by lines 

The ideal quantum gas can be characterized by the constant g of equation (l), and by the 
variable T f  ’ /U.  In order to make the diagram applicable to other fluids, it is desirable to 
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Table 3. Summary of four types of systems discussed 

Ideal quantum Super-ideal Ideal classical Ideal classical gas 
gas gas gas of constant y 

Definition p v  = gu p v  = gu PO = N k T  p v  = N k T  
T S  = j U  y is a constant 

y -  1 g = 7-1  

i - 
j -  1 

1 1 

I . .  

i 
Some other z = Tv8 f ( z )  = - z ~ / ( ~ - l l  

S + h ( z )  h(z )  = A z l / ( j -  I 1  

consequences u v g  = f (z)  

f '  = z h  

replace these two quantities by generalizations which represent frequently measured 
parameters. It is clear from Landsberg (1961b, p 203) that for an ideal quantum gas 

where Bs is the adiabatic bulk modulus of elasticity, p is the density of the fluid and U is 
the velocity of sound. We shall take the framed part of (21) as the x coordinate for 
general fluids. 

It is also known from the same reference that for an ideal quantum gas 

CP - (1 + g W  Y E - - -  
C, (1 +g)U-gTf"  

whence 

We shall take the framed part of (22) as the y coordinate for general fluids. For given 
pressure p and temperature T one then needs experimental estimates of a, p and y to 
represent the state of the fluid by a point. General fluids will be represented by general 
curves on this diagram. 

Ideal classical gases satisfy p v  = AT, where A is a constant, so that 

BT = P ,  Bs = Y P ,  

and they are represented by the horizontal line y = 1, the temperature dependence of the 
specific heat being still arbitrary. An ideal quantum gas, p v  = gU, will be represented 
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by the vertical line x = g. If such a fluid is super-ideal it will be represented by the point 

The vertical line C G  represents the ideal non-relativistic three-dimensional quantum 
gases of particles having non-zero rest mass. The effect of relativistic particle speeds is to 
push the system to the left of this line and it ceases to satisfy an equation p v  = gU with 
constant g. Such systems are represented by curves in the region CGHE. In the case 
of an extreme relativistic gas, however, the system lies on the line EH. 

I 
G 

i 

I 
1 I I I 1 0 4  4 '  2 j 4 

B X = S - l  
P 

Figure 2. A 'contracted' thermodynamic diagram for fluids. The labelling of the points 
corresponds to that given in table 1. Super-ideal systems are represented by points, ideal 
quantum systems by vertical lines and ideal classical systems by the line y = 1. 

For ideal quantum systems the figure has a simple interpretation, as follows. I t  is 
clear from equation (8) that as one proceeds to the left of figure 2 the single particle 
energy level density rises more and more rapidly with the single particle energy E. At 
x = 1 the level density is independent of E ;  it behaves as a negative power of E for 
x > 1, and as a position power for x < 1. On the other hand, as one proceeds up the 
vertical axis the heat capacity at constant volume of an ideal quantum gas increases 
more and more strongly with temperature. This is easily seen if one assumes that 
C, = xTr where K and r are constants. For then 
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5. Conditions for stability 

For thermal and mechanical stability one requires 

e, > 0, B, > 0. 

I f  the conditions are taken in the form 

then they imply for an ideal quantum gas 1 + g  > 0, 

l+g-gTf’/U 2 0. 

If g > 0, 

Tf’lU < 1 + l/g 

i f - l < g < O ,  

Tf‘/U 3 1 - 1lIgl. 

The limit (26) has been shown in figure 2. For ideal quantum systems which lie on this 
line the equality holds in (26). For such systems (Landsberg 1961b, p 203) C, = x and 
y = 1 + l /g is a constant. It follows that such systems are represented by a point and are 
super-ideal. Therefore they have y = j / ( j -  l), so that g = j -  1 in such cases. This 
applies for example to systems G and H, as may be seen from figure 2 and table 1. Figure 
2 thus serves to illustrate the relation between various ideal systems, and it may be hoped 
that it will also help one to study the relation between ideal and real systems. 

6. Real gases 

For a real gas one may use the data of Hilsenrath et a/ (1960). Taking nitrogen as an 
example. we calculate that for the range 

T = (200,3000) K p = (0.01, 100) atm. 

All states of the gas lie within a rectangle 

x = (0.38, 1.14), y = (0.78,0.99). 

This rectangle lies just below the ideal gas line between x = 
For a liquid like carbon tetrachloride y lies again below unity, but the very much 

larger bulk modulus pushes the corresponding x values to quite large numbers. For the 
range (Rowlinson 1969, p 53) 

and x = (see figure 2). 

T = (250,343) K, p = (0.01,0.82) bar 

one calculates 

= (1.1 io4, 1.8 x 106). 4’ = (0.69, 0.70). 

The range of y is again quite narrow. 
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